#### 2004 Science Forum

## Targeted screening for invasive species in ballast: genomic approaches

Michael Blum
USEPA
Office of Research and Development
National Exposure Research Laboratory

Building a scientific foundation for sound environmental decisions



### European green crab



#### Zebra mussels



Building a scientific foundation for sound environmental decisions



















Zebra mussel





### Identifying species found in ballast



#### Morphological taxonomy

- traditional approach
- technologically simple (ie. microscopy...)
- classification dependent on adult traits
  - larval and egg forms poorly characterized
- requires broad knowledge of major taxonomic groups
  - or requires assistance from a range of experts
- identification typically limited to family or genus level
- limited treatment of cryptic or difficult taxa
- no standard for comparison across studies
- data have limited applicability (ie. species inventories...)

# RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

#### Identifying species found in ballast

#### Bioinformatics and "DNA taxonomy"

- alternative approach that may substitute for or complement traditional morphological taxonomy
- technology dependent on application (simple to complex)
- classification dependent on genomic variation
  - useful for classifying eggs, larvae and adults
- does not require broad knowledge of major taxonomic groups
  - requires expert training in genetics and bioinformatics
- identification at the species or subspecies level
- full treatment of cryptic and difficult taxa
- provides an objective standard for comparison across studies
- data have broad applicability



Building a scientific foundation for sound environmental decisions

## Targeted screening of ballast for invasive species

P.I. Michael J. Blum (blum.mike@epa.gov) EPA/ORD/NERL Cincinnati

- Research supported by the Regional Methods program
  - ORD partnering with Regions 5, 9, 10 and GLNPO
- Novel application of allele-specific PCR methods and DNA sequencing technology
- Development and application of bioinformatic databases
- Research objectives:
  - Exploratory characterization of species diversity in ballast
  - Targeted screening of ballast for invasive species

# Building a scientific foundation for sound environmental decisions

#### Potential applications

- Early detection and monitoring of:
  - Non-indigenous species (NIS) of concern
  - Cryptic invasions
  - Introgressive hybridization between NIS and endemic species
- Assessing compliance with treatment requirements (ie. open-ocean exchange)
- Risk assessment
- Characterization of invasion events
  - Frequency
  - Magnitude
    - "propagule pressure"
  - Directionality (pathways)
  - Post-introduction population dynamics

Building a scientific foundation for sound environmental decisions

#### Research objectives

- (1) Exploratory characterization of faunal species diversity found in ballast
- (2) Targeted screening for individual species of concern
  - Established species in the Great Lakes:
    - Dreissena polymorpha, D. bugensis (Zebra and Quagga mussels)
    - Gymnocephalus cernuus (Eurasian ruffe)
    - Neogobius melanostomus (Round goby)
    - Proterorhinus marmoratus (Tubenose goby)
    - Cercopagis pengoi (Fish-hook water flea)
    - Bythotrephes longimanus (Spiny water flea)
    - Echinogammarus ischnus (amphipod)
    - Bosmina maritima (cladoceran)
    - Nitocra incerta (copepod)
  - Species likely to invade the Great Lakes:
    - Perca fluviatilis (European perch)
    - Others...
  - Established species in Pacific estuaries and elsewhere:
    - Carcinus maenas (European green crab)
    - Eriocheir sinensis (Chinese mitten crab)

# Building a scientific foundation for sound environmental

decisions

#### Timeline and status of the project...

- Initiated in December, 2003
- Ballast samples from Great Lakes secured through collaborators in February and May, 2004
- Contracts recently drafted to sample ship traffic between San Francisco, Columbia River and Puget Sound
- Laboratory work now underway on Great Lakes samples
- Sampling of Pacific coast traffic will commence in late summer, 2004 and will continue through Spring, 2005

Building a scientific foundation for sound environmental decisions

**Resting eggs or tissue** in ballast water or sediment





**DNA** extraction and purification



### "from sludge to sequences"





Allele-specific PCR amplification



Building a scientific foundation for sound environmental decisions

### Designing allele-specific PCR primers for preferential amplification of targeted species or groups of species



#### Requires identification of primer binding sites that are:

identical among individuals within a target group absent or ineffective among members of excluded group

#### Requires identification of amplicon gene regions that are:

consistent within the target group variable among members of different target groups



## Diagnostic markers can be used to differentiate between sister species, and even hybrids

Spartina alterniflora



Spartina foliosa

Building a scientific foundation for sound environmental decisions

#### **DNA** sequencing of cloned amplicons

To reduce costs, a subsample of cloned amplicons is sequenced





Jarman et al. 2004

The amount of sequencing necessary to sample all potential operational taxonomic units depends on the specificity of the target group- less subsampling is required as specificity increases

RESEARCH & Exploratory characterization d DEVELOPMENT of species diversity Building a **Arthropoda** scientific foundation **Neighbor-joining (NJ)** for sound analysis of reference data environmental decisions based on Cytochrome Chordata Oxidase I mitochondrial gene sequences from GenBank provides a large Mollusca framework for assignment (Cephalopoda) of experimental data to Annelida gross taxonomic groups (redrawn from Hebert et al. 2003) Mollusca Nematoda (Rhabditoidea) NE 10 (Spirurida) Platyhelminthes

Building a scientific foundation for sound environmental decisions



# RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

### Boiling it down...

- Molecular approaches can provide powerful tools for:
  - exploratory characterization of ballast water contents
  - targeted screening for species of concern
    - consistently accurate species level identifications of all life stages
- Molecular data function as a common denominator and have broad applicability

Building a scientific foundation for sound environmental decisions

#### Future directions

- Application of techniques to support early detection and monitoring programs, assessing compliance with ballast treatment regs
- Development of stream-lined molecular tools for detection and monitoring (an invasive species gene array chip?)
  - May emerge through collaborations between EPA, USGS, USCG, NOAA and CSIRO
- Development and implementation of NISfocused bioinformatic databases
  - An excellent opportunity to integrate morphological and DNA taxonomy approaches via collection of sequence data from curated specimens
- Further integration of multidisciplinary data (from genes to landscapes) to support risk assessment and vulnerability analyses of coastal regions

Building a scientific foundation for sound environmental decisions

